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Abstract 

The lowest degree chirality polynomials for the regular octahedron, cube, and 
regular icosahedron are discussed. All three of these regular polyhedra are chirally 
degenerate since they have more than one lowest degree chiral ligand parition by 
the Ruch-Sch6nhofer  scheme. The two lowest degree chirality polynomials for 
the octahedron have degree 6 and can be formed from three degree 3 generating 
polynomials f, g, and t2 through the relationships f ( g  -t- h) and f ( g  - h), where 
f, g, and h measure the effects of the three separating reflection planes (Oh), the 
four threefold rotation axes, and the three fourfold rotation axes, respectively. 
The permutation groups of the vertices of the cube and icosahedron contain only 
even permutations, which leads to a natural pairing of their chiral ligand partitions 
according to equivalence of the corresponding Young diagrams upon reflection 
through their diagonals. The two lowest degree chirality polynomials for the cube 
have degree 4 and can be formed from two degree 4 generating polynomials l a n d  
g through the relationships - 2 g  and f - - 2 g ,  where f and g measure the effects of 
the S 6 improper rotation and C 4 proper rotation axes, respectively. The four 
lowest degree chiral ligand partitions for the icosahedron have degree 4 and lead 
naturally to a single degree 4 chirality polynomial with 120 terms of the general 
type (x -- y)2 (z -- w) 2 . This chkality polynomial for the icosahedron cannot be 
broken down into simpler generating polynomials, in contrast to the lowest degree 
chirality polynomials for the octahedron and cube. This appears to relate to the 
origin of the icosahedral group from the simple alternating group A s. The full 
icosahedral chirality polynomial can be simplified to give a chirality polynomial 
for the chiral boron-monosubstituted ortho and meta carboranes of the general 
formula B2C~oHI 1X. 

1. Introduction 

The geometrical and algebraic theories of chirality [1-8]  are important for 
the understanding of chemically significant pseudoscalar measurements such as optical 
rotation and circular dichroism. Such theories have the following objectives: 
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(1) Determination of the ligand partitions for a given achiral molecular skeleton 
which lead to chiral systems, namely, how asymmetrical must a ligand partition be 
before all improper rotation symmetry elements S n (including reflection planes 
S 1 - o and inversion centers S 2 - i) of an achiral skeleton are destroyed. This leads 
naturally to the idea o f ch i ra l  d imens iona l i t y  [1], X a = 17 ! / I G  I, for an achiral skeleton 
having n sites and point group G; the chiral dimensionality corresponds to the number 
of enantiomer pairs when each site of the skeleton has a different ligand or substituent. 

(2) Determination of mathematical functions (chirality functions) by which 
the magnitude and sign of a given pseudoscalar property (the dependent variable) can 
be calculated for a given skeleton using parameters which depend only upon the 
ligands located at specific sites on the skeleton (the independent variables). The 
chirality polynomial of lowest degree in the Ruch-Sch6nhofe r  scheme [4,5] is 
particularly significant since by using algebraic invariant theory, Meink6hn [9,10] 
has shown that only the lowest degree chirality polynomials for a given skeleton are 
required to have the desirable property of depending only upon the differences be- 
tween the ligand parameters. For this reason, this paper will be concerned only with 
the chirality polynomials of the lowest degree. 

An essential feature of chirality algebra is the dissection of a molecule into 
a collection of ligands and an underlying skeleton. This terminology refers to a co- 
ordination compound of the generic type ML n (M = central atom, generally a metal; 
L n = n ligands not necessarily equivalent). However, with no essential changes in the 
mathematics, the theory can also consider organic skeletons, polyhedral boranes, or 
metal cluster compounds having n substituents or tigands. As in previous papers [1,8], 

b~ . .  a~k)wher  e ligand partitions are represented by symbols of the type (a~ ' ,  a 2 , . , 

a e and b e are small positive integers indicating b k sets of  a k identical ligands, and 
am > 1 % , + 1  (1 ~< m <~k). 

The essential ideas of chirality algebra were first presented by Ruch and 
Sch6nhofer [3,4] and have been reviewed by Ruch [2] at an elementary level and by 
Mead [5] at a more advanced mathematical level. Chirality functions have been tested 
experimentally for the methane [11,12] allene [13], polarized rectangle [8] (e.g. 
[2, 2]-metacyclophane [14,15] and 2, 2'-spirobiindane [16,17] skeletons), cyclo- 
pentane [18], and ferrocene [19] skeletons with varying degrees of success. The 
papers by the present author relate chirality algebra to the framework groups [8] of 
Pople [20] and use concepts from permutation group theory and Meink6hn's [9,10] 
development of algebraic invariant theory to study of chirality in transitive skeletons 
[1 ],  with particular emphasis on a group theoretical basis for the extensively discussed 
[4,5,7,21] idea of qualitative completeness. This paper extends the ideas of the 
previous paper [1]  to those necessary for the study of the lowest degree chirality 
polynomials of three of the four regular polyhedra with non-trivial chirality functions, 
namely the octahedron, cube, and icosahedron. In this connection, the structures of 
the previously reported lowest degree chirality polynomials of the octahedron [1,3,4] 
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and the cube [3] are discussed, and that of the icosahedron is presented for the first 
time. The octahedral skeleton is important in six-coordinate complexes ML6, the 
cubic skeleton is important in cubane and inorganic analogues, and the icosahedral 
skeleton is important in icosalaedral boranes and carboranes such as substitution 
products of the three isomers of C 2 BloH12. 

2. B a c k g r o u n d  

The determination of the lowest degree chirality polynomial for a given skeleton 
having n sites involves the following two steps, which are discussed in detail elsewhere 
[5,6,81: 

(1) The chiral ligand partitions are determined by considering the point 
group G as a subgroup of the symmetric group Pn and calculating by standard group 
theoretical procedures [22-25]  the number of times that the chiral representation 
F* of G appears when each irreducible representation of Pn is restricted to elements 
of G. In this connection, the chiral representation P* has + 1 characters for proper 
rotations and -1  characters for improper rotations. Character tables for the symmetric 
groups Pn are required for this step [ 2 6 - 2 8 ] .  

(2) The chirality polynomial X for a given chiral ligand partition (a~', 
a2b~ , . .  . , a bk)  found in the above step has a term of degree g for each element of G 
corresponding to its effect in permuting the sites represented by an appropriately 
selected monomial M of degree g. These terms have positive signs for proper rotations 
and negative signs for improper rotations. The chirality polynomial can thus be repre- 
sented schematically as 

X(ab11, ab22,...,abkk ) = G * M .  (1) 

The "star" operation "*" in eq. (1) refers to a sum of all of the permutations of the 
sites represented by M by all of  the elements in G with positive signs for proper 
rotations and negative signs for improper rotations [6]. 

The set of  elements in the point group G are conveniently described by its 
cycle index Z(G), which is defined as follows [1,8,29] : 

i = C  
1 ~ a x ell  ci2 X c in  

Z(G) = IG"--~ i 1 x2 "'" n " 
i = 1  

(2) 

The variables in eq. (2) are defined as follows: 

I G 1 = number of  elements in G, 

n = number of  sites in the skeleton, 
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c -- number of  terms in the cycle index, 

a. = number of elements in the permutation group having the indicated 
l 

cycle structure, 

x k = dummy variable referring to cycles of  length k, 

cik = exponent indicating the number of cycles of length k in term i. 

The parity of a permutation is odd or even depending upon whether the total 
number of cycles of  even length in the permutation is odd or even, respectively. A 
group containing only even permutations may be called an even permutation group; 
important examples of even permutation groups encountered in this paper are the 
groups of  the cube and the icosahedron. 

Another fundamental idea of  chirality algebra is that depicting ligand partitions 
as a collection of boxes called Young diagrams [30]. A Young diagram for a ligand 

b~ . . a b~:) has Z i b  i rows where the first b 1 rows have a I boxes, partition (a b', a 2 , .  , 
the next b 2 rows have a 2 boxes, etc. Reflection of  a Young diagram through its 
diagonal gives its dual Young diagram, e .g. 

x 

ref ect, 
\ 

(32) . . . . . . . .  > (251) 

A pair of  Young diagrams consisting of a Young diagram and its dual is called a dual 
pair. A Young diagram which is identical to its dual is called self-dual, e.g. 

\ \  ' ~  

re* ect 

(312 ) (312 ) 

(4) 

A balanced set of Young diagrams or corresponding ligand partitions contains only 
dual pairs and self-dual Young diagrams. 

Important properties of ligand partitions and their Young diagrams are their 
degrees and their dimensions. The degree g of a ligand partition can be determined 
from the corresponding Young diagram by the following sum over all of  its columns: 

m 
1 

g = ~ ~_~ ck(c k - l ) ,  (5) 
k = l  
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where % is the length of column k and m is the number of columns. The degree g 
as determined by eq. (5) corresponds to the degree of the lowest degree chirality 
polynomial. The dimension of a partition of n ligands is the dimension of the corre- 
sponding irreducible representation of the symmetric [30] group Pn" The sum of the 
dimensions of the chiral ligand partitions for a given skeleton with n sites is its chiral 
dimensionality X d , which may be calculated by the following equation: 

X a = n!/IGI. (6) 

This equation is useful for checking the calculations of the ligand partitions and indi- 
cating the size of the total set of chiral ligand partitions. The chiral dimensionalities of 
the regular polyhedra of interest in this paper, namely the tetrahedron, octahedron, 
cube, icosahedron, and dodecahedron are 1, 15,840, 3 991 680, and approximately 
2.027 4183 X 1016 , respectively. The regular dodecahedron is excluded from detailed 
consideration in this paper not only by its unmanageably large chiral dimensionality, 
but by the intractably large size and complexity of the required character table for the 
symmetric group P2o of order 20! ~ 2.432 902 X 1018 . Study of the regular dodeca- 
hedron is only feasible by using computers with the prior need for development of 
software to handle character tables for groups as large as P2o. Such efforts do not yet 
appear warranted since the first regular dodecahedral skeletons, namely dodecahedrane 
derivatives [31,32], have only recently been prepared and still are only available in 
very limited quantities. 

Study of the chirality polynomials of the cube and icosahedron is facilitated 
by the even permutation groups of these skeletons. In this case, the following theorem 
is used: 

THEOREM 

The chiral ligand partitions of a skeleton having an even permutation group 
form a balanced set. 

The proof of this theorem depends upon the observation that irreducible 
representations of the symmetric group Pn which correspond to ligand partitions 
having dual Young diagrams have the same characters for all even permutations 
[26, 30].  Therefore, if the permutation group is an even permutation group with no 
odd permutations, both members of a dual pair must appear equally in the representa- 
tion of Pn subduced by G. 

In this paper, the sites of the regular polyhedra are labelled by capital letters 
as indicated in fig. 1. For clarity, the same letters will also be used to represent the 
parameters for the ligands located at these sites. 

The chirality polynomial for the tetrahedron is well known [ 2 - 6 ] ,  and using 
the notation in this paper can be written as follows: 
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A 
B D 

C 
DI F 

F 
E 

Octahedron Trigonal Prism 

A 

A ~ G  C E 
G K E 

M 

III 
L F@ 

K G 

E C 

D 

Icosahedron 
Fig. 1. The vertex labellings used for 
the polyhedra discussed in this paper. 

X(14) (Td) = (A -B )  (A - C) (A -D)  (B - C) (B -D)  (C-D).  (7) 

In the context of this paper, this chirality polynomial may be regarded as trivial and 
therefore not discussed further. Also the lowest degree chirality polynomial for the 
trigonal antiprism (framework group D3a [3oa(L2)])  [8], although not that of  a 
regular polyhedron, is significant in this paper for indicating the effect of an S 6 axis, 
such as in a cube. This degree 2 polynomial corresponds to a chiral ligand partition 
(42) and can be written as follows: 

X(42) (Dad) = (A -B )  ( D - F )  - (A - C )  (D-E) .  (8) 
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3. The  oc tahedron  

The chiral dimensionality of the octahedron is 6!/10~1 = 720/48 = 15 and the 
octahedron has two chiral ligand partitions, namely (313) and (23) of dimensions 10 
and 5, respectively. Both of these chiral ligand partitions are of degree 6, indicating 
that the lowest degree chirality polynomials contains terms corresponding to both 
chiral ligand partitions. A polyhedron, such as the octahedron, having more than one 
lowest degree chiral ligand partition may be called chirally degenerate. 

In order to construct the lowest degree chirality polynomial for the regular 
octahedron, consider the following three degree 3 polynomials: 

f ( A  .. . F) = ( A - F ) ( B - E ) ( C - D )  (9a) 

g(A . . .  F) = (A - B ) ( B - C ) ( C - A )  + ( C - F ) ( F - E ) ( E - C )  

+ ( A - E ) ( E - D ) ( D - A )  + ( B - D ) ( D - F ) ( F - B )  (9b) 

h ( A . . . F )  = ( A - B  + F - E ) ( A - D +  F - C ) ( B - D +  E - C ) .  (9c) 

The polynomial f measures the effects of the three orthogonal separating [8] reflection 
planes (%) of the octahedron. The polynomial g measures the effects of the four 
threefold rotation axes (C3) of the octahedron noting the following degree 3 chirality 
polynomial for the polarized triangle representing the prototypical C 3 axis [3,4] : 

t(A, B, C) = (A - C) (B - A )  (C-B) .  (10) 

Similarly, the polynomial h measures the effects of the three orthogonal C4 axes of 
the octahedron noting the following degree 3 chirality polynomial for the polarized 
squares [8] representing the prototypical C 4 axis: 

q ( A . . .  D) = ( B - A ) ( D - C ) ( A - C +  B - D ) .  (11) 

The three linear factors in h [eq. (9c)] correspond to the (A - C + B -  D) factor in q 
[eq. (11)] with the B - A and D - C factors in q corresponding to the factors in f 
[eq. (ga)]. The degree 3 polynomials f g, and h may be called generating polynomials 
for the lowest degree chirality polynomials of the regular octahedron since arithmetic 
functions of f g, and h generate these chirality polynomials. 

The degree 6 chirality polynomials corresponding to the two chiral ligand 
partitions of the octahedron can be constructed from the degree 3 generating poly- 
nomials f, g, and h as follows: 



52 R.B. King, Applications o f  topology and group theory: XXI I  

X(2 a ) (Oh) = f ( g  + h) = (2) O h * (a 2 b 2 cd) 

X(313) (Oh) = f ( g - h )  = (2)O h * ( a  a b 2 c). 

(12a) 

(12b) 

In eqs. (12a) and (12b), the designations O h * (a z b 2 cd)and Oh* (a 3 b 2 c)refer  to the 
construction of  these chirality polynomials by application of the 48 permutations of 
O h to monomials of the form a 2 b 2 cd and a 3 b 2 c, respectively, as outlined generically 
in eq. (1), where G is O h and M is a monomial of  the prescribed forms. 

4. T h e  c u b e  

The (vertex) cycle index of  the cube has the following form: 

a 2 2 13x 4 + 12x~ + 8 X 2 X  6 + 6x~ x 2 . Z(cube) = x I -k 8 X l  x 3  + 2 (13) 

The parities of  all of  these permutations are even, indicating that the permutation 
group of the cube is even. Therefore, the chiral ligand partitions of the cube form a 
balanced set having total dimension 840 corresponding to the chiral dimensionality of  
the cube (8 !/IO h J = 40 320/48 = 840). These chiral ligand partitions are listed in table 1 
as dual pairs with minimum degree corresponding to the lower degree of  the two chiral 
ligand partitions forming a dual pair. The self-dual chiral ligand partition (4212) is 
starred. 

Table 1 

The chiral ligand partitions of the cube listed as dual pairs 

Minimum 
Dual pair degree Multiplicity Dimension 

(521) + (3213) 4 1 64 
(42 ) +(24 ) 4 1 14 
(431) +(3221) 5 1 70 
(513 ) +(414 ) 6 2 35 
(422 ) +(3212 ) 6 2 56 
(4212) * 7 2 90 

Table 1 indicates that the cube, like the octahedron, is chirally degenerate with 
the two degree 4 lowest degree chiral ligand partitions (42 ) and (521) corresponding to 
the following Young tableaux for the labelling in fig. 1 : 
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C IAIBI 'IEI G1 
D E  F H  

(42 ) (521) (14) 

The degree 4 chirality polynomials for these chiral ligand partitions can be obtained 
from the following two degree 4 generating polynomials: 

f ( A .  . .  H)  = (A - G )  2 [ ( B - E )  ( C - F )  - ( D - E ) ( C - H ) ]  

- ( B  - H )  2 [ ( A  - C )  ( /9  - E )  - ( C  - F )  ( E  - G ) ]  

- ( C - E )  2 [ ( A - F ) ( B - D ) - ( F - H ) ( D - G ) ]  

+ ( D - F )  z [ ( A - H ) ( B - E )  - ( C - H ) ( B - G ) ] .  (15a) 

g(A .. . H)  = (A - C) ( B -  G) ( F - H )  ( E - D )  

- ( A  - H )  (B  - D )  ( F  - C )  ( E  - G ) .  (15b) 

Each term of the generating polynomial f consists of a degree 2 factor (e.g. 
[(B - E) (C - F )  - (D - E)  (C - H ) ]  for six vertices related by an Sa axis resembling 
the degree 2 chirality polynomial for a trigonal prism or antiprism [see eq. (8)] and a 
second degree 2 factor (e.g. (A - G) 2) corresponding to the two vertices on this S 6 
axis. The four terms in the generating polynomial f relate to the four S 6 axes in the 
cube. Each term of the generating polynomial g consists of a product of four dif- 
ferences involving diagonals of four (square) faces of the cube related by the C 4 axis. 
Thus, the generating Folynomial freflects the threefold and sixfold symmetries of the 
cube and the generating polynomial g reflects the fourfold symmetry of the cube. 

The degree 4 chirality polynomials corresponding to the two ctfiral ligand 
partitions of the cube can be constructed from the generating polynomials l a n d  g as 
follows: 

X(4 z) = - 2g = (2)O h* (abcd) (16a) 

X(521) = f - 2g = (2)O a*(a2bc) .  (16b) 

The chirality polynomial for the cube given by Ruch and Sch6nhofer [3] can be ex- 
pressed in terms of the generating functions f a n d  g as 
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X(cube) = a f  - bg. (17) 

This chirality polynomial appears qualitatively complete as long as a 4 : 0  and b :~ 2a; 
if these inequalities are not satisfied, eq. (17) reduces to eq. (16a) (for a = 0) or 
eq. (16b) (for b = 2a). 

5. T h e  i c o s a h e d r o n  

The vertex cycle index of the icosahedron has the following form: 

2 4 16x62 Z(icosahedron) = xll 2 + 24x~x2s + Ox 3 + 

+ 24x2 Xlo + 20x~ + 15x~x~ . (18) 

The parities of all of these permutations are even, indicating that the permutation 
group of the icosahedron is even. Therefore, the chiral ligand partitions of the icosa- 
hedron form a balanced set having total dimension 12!/llhl = 479001 600/120 
= 3 991 680. These chJral ligand partitions (table 2) were determined by the standard 
group theoretical procedure [5,8] using the character tables for the symmetric group 
P12 given by Zia-ud-Din [28]. 

Table 2 indicates that the icosahedron is chJrally degenerate like the octa- 
hedron and cube. The icosahedron thus has four degree 4 lowest degree chiral ligand 
partitions, two of the type (921) and two of the type (84). The Young tableaux for 
the two (921) chiral ligand partitions are listed below using the labelling in fig. 1 : 

(921) o (921) m 

The chiral ligand partitions (921)o and (921)m correspond to the chiral isomers of 
the ortho and meta icosahedral carboranes C 2 BloHllX (fig. 2). The Young tableaux 
for the chiral ligand partitions (84)i and (84)o are listed below: 

A B M [ K  C I H I J [ L  D E G H A[ B [ F I L  
F E DIG  C M J K " 

(84) i (84) 0 
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Table 2 

The chiral ligand partitions of the icosahedron listed as dual pairs 

Minimum 
Dual pair degree Multiplicity Dimension 

(921) +(3217 ) 4 2 320 
(84) + (24 14) 4 2 275 
(831) +(32215) 5 6 891 
(913) + (418 ) 6 4 165 
(82 =) +(3 = 16 ) 6 8 616 
(741) + (32313) 6 12 1408 
(62 ) +(26 ) 6 4 132 
(8212 ) +(4216 ) 7 8 945 
(732) +(3 = 214) 7 12 1925 
(651) +(324 1) 7 8 1155 
(7312 ) + (42214 ) 8 26 2376 
(642) + (3 = 2212 ) 8 26 2673 
(7221) + (431 s) 9 14 2079 
(6412 ) +(42312 ) 9 24 3080 
(632 ) + (3313 ) 9 12 1650 
(522) +(3223 ) 9 6 1320 
(81')  +(51 T) 10 4 330 
(6321) + (43213) 10 46 5632 
(521 = ) + (424) 10 18 1485 
(543) +(3321) 10 16 2112 
(7213 ) +(521 s) 11 14 1728 
(5421) + (432 = 1) 11 48 5775 
(6313 ) + (52213 ) 12 36 3696 
(623) + (4314) 12 20 1925 
(53 = 1) +(4321 =) 12 40 4158 
(43 ) + (34) 12 10 462 
(62212) + (5314 ) 13 24 3564 
(5413) +(5231) 13 28 3520 
(532 =) + (4 = 21 =) 13 30 4455 
(4231) + (43 = 2) 13 22 2970 

(53212) * 14 68 7700 
(42 22)* 14 28 2640 

(71 s) +(616 ) 15 2 462 
(6214) * 16 16 2100 
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~ X 

a) Chiral ortho-carborane, CzBioHnX 

~ X 

b) Chiral meta- carborane, CzBmH u X 

Fig. 2. The two chiral icosahedral carboranes 
C2BIoHI~X. Large black circles indicate the 
locations of the carbon atoms. 

In order to obtain these chiral ligand partitions, construct the icosahedron from two 
nested D3a trigonal antiprisms sharing the C 3 axis. Combine the lowest degree chiral 
(42) ligand partitions of these trigonal antiprisms in two ways to give (84) ligand 
partitions, preserving the chirality by not introducing any improper rotation axes in 
the combination process. One of these chiral (84) ligand partitions, namely (84)i, has 
the four equivalent ligands at vertices of the inner trigonal antiprism, whereas the 
other chiral (84) ligand partition, namely (84)o, has the four equivalent ligands at 
vertices of  the outer tfigonal antipfism. 

These four chiral ligand partitions can be used to construct the lowest degree 
chirality polynomial for the icosahedron by the standard group-theoretical procedure 
[6,8] which can be represented schematically as follows: 

X(icosahedron) = I h * [a 2 bc(921)o ] + I h * [a 2 bc(921)m I 

+ I h * [abcd(84) i  ] + I h * [ a b c d ( 8 4 ) o  I . (19) 

Since the icosahedral group I h has 120 elements, the procedure represented by eq. (19) 
generates 480 terms. Because of the high symmetry of the icosahedron, this is not as 
forbidding as it might seem and the procedure indicated in eq. (19) using monomials 
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derived from the Young tableaux (921)o , (921)m , (84)i, and (84)o generates the 
equation listed in table 3 for the lowest degree chirality polynomial of  the icosahedron. 
This equation has 120 terms of the general type (x - y)2 (z - w) 2 . These 120 terms 
can be grouped into six sets of  20 terms each. Each of the six sets is characterized by 
a common (x - y ) 2  factor, where x and y are parameters for ligands at the antipodal 
vertices related by the inversion operation ( "para" vertices in icosahedral carborane 
nomenclature [33]). The six sets of 20 terms arise from the six such pairs of anti- 
podal vertices in the regular icosahedron. The other factor, (z - w) 2 , corresponds to 
the ligand parameters for a pair of  non-adjacent, non-antipodal vertices ( " m e t a "  
vertices in icosahedral carborane nomenclature [33]). The alternation of signs in the 
equation in table 3 causes the 240 pairs of terms of the type x2z  2 to cancel out com- 
pletely, in accord with the fact that the expansion indicated in eq. (19) does not use 
the impossible a 2 b 2 monomial for a lowest degree chirality function. In the equation 
in table 3, the 480 terms of the type x 2 wz arise from the (921) chiral ligand parti- 
tions and the 120 terms of the type x y w z  arise from the (84) chiral ligand partitions, 
as indicated in eq. (19). 

It is instructive to compare the general form of the lowest degree chirality 
polynomial of the icosahedron (table 3) with those of the octahedron [eqs. (9) and 
(12)] and the cube [eqs. (15) and (16)]. The polynomial f ( A . . .  H) for the cube 
[eq. (15a)] and the chirality polynomial for the icosahedron both have factors of the 
type (x - y ) 2  in which x and y are a pair of antipodal vertices. The remaining factor 
of  a term of the generating polynomial f ( A . . .  H) [eq. (15a)] resembles the chirality 
polynomial of the trigonal antiprism [eq. (8)] which is the symmetry of the set of  
six vertices of a cube remaining after removing a pair of antipodal vertices. However, 
the same is not true for the icosahedron chirality polynomial in table 3. Thus, the 
20 terms remaining after factoring (A - M) 2 from the first 20 terms of the icosa- 
hedron chirality polynomial do not resemble the chirality polynomial for the penta- 
gonal antiprism determined by Ruch and Sch6nhofer [3]. This, as well as the inability 
to decompose the icosahedral chirality polynomial in table 3 into a simpler set of  
generating polynomials similar to f, g, and h [eq. (9)] for the octahedron or f a n d  g 
[eq. (15)] for the cube, may relate to the fact that the icosahedral group is isomorphic 
[34] to the direct product [35] of C 2 with the simple [36] group A s . The simplicity 
of A s appears to have the effect of mixing up the portions of  the lowest degree 
chirality polynomial of the icosahedron so that it can not be decomposed into gener- 
ating functions reflecting its different symmetries, in contrast to the chirality of the 
octahedron and cube discussed above. 

The lowest degree chirality polynomial in table 3 is rather forbidding for actual 
chemical applications, although it would be required in the unlikely case of an icosa- 
hedral borane or carborane having a different substituent in each of its twelve posi- 
tions. More realistic cases of possible chemical interest are the chiral monosubstituted 
carboranes C2BloHI~X in fig. 2. Thus, among the four possible ortho carboranes 
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Table 3 

Lowest degree of chirality polynomial of the icosahedron 

X ( A  . . .  M )  = ( A  

: (C 
- ( D  

- ( F  

+ (A 
+ (a 

+ (L 
+ (C 
+ (D 
- ( G  

+ (D 
+ (E 
- ( H  

+ (E 
+ 

+ 

+ 

- 3 ' / )  2 [ ( B - / £ ) 2  _ ( B _ H )  2 + ( B - L )  2 - ( B -  G )  2 + ( C - L )  2 

_ j ) 2  + ( C _  G )  2 - ( C - H )  2 + ( D -  G )  2 - ( D - K )  2 + ( D - H )  2 

_ J ) 2  + ( E _ H )  2 - ( E - L )  2 + ( E  - J ) ~  - ( E  - K )  2 + ( / 7 -  j ) 2  

- G )  2 + ( F - K )  2 - ( F - L )  2]  + ( B - J ) 2  [ ( A  - K )  2 - ( A  - H )  2 

- E )  2 - (A  - D )  2 + ( C - E )  2 - ( C - M )  2 + ( C - D )  2 - ( C - H )  2 

- D )  2 - ( G - K )  2 + ( G - H )  2 - ( G - I V / )  2 + ( L  - H )  2 - (L  - E )  2 

- M )  2 - (L - K )  2 + ( F - M ' )  2 - ( F - D )  2 + ( F - K )  2 - ( F - E )  2]  

- K )  2 [ ( A  - L )  2 - ( A  - S )  2 + ( A  - F )  2 - ( A  - E )  2 + ( D - F )  2 - ( D - M )  2 

- E )  2 - ( D - J ) 2  + ( H _ E )  2 - ( H - L )  2 + ( H - J ) 2  _ ( H - M )  2 + ( G - J ) 2  

- -  F )  2 

- L )  2 

- F )  ~ 

- B )  2 

- G )  2 

+ ( G - M )  2 - ( G - L )  2 + ( B - M )  2 - ( B - E )  2 + ( B - L )  2 - ( B - F )  2]  

[ ( A  - G )  2 - ( A  - K )  2 + ( A  - B )  2 - ( A  - F )  2 + ( E - B )  2 - ( E - M )  2 

-- ( E - K )  2 + ( J - F )  2 - ( S -  G)  2 + ( J - K )  2 - ( J - M )  2 + ( H - K )  2 

+ ( H - M )  2 - ( H -  G )  2 + ( C - M )  2 - ( C - F )  2 + ( C -  G )  2 - ( C - B )  2]  

[ ( A  - H )  2 - (A  - L )  2 + ( A  - C) 2 - ( A  - S )  2 + ( F -  (2') 2 - ( / 7 - M )  2 

( F - B )  2 - ( F - L )  2 + ( K - B )  = - ( K - H )  2 + ( K - L )  2 -- ( K - M )  = + ( J - L )  2 

( J -  C) 2 + ( J - M )  ~ - ( J - H )  2 + ( D - M )  2 - ( D - B )  2 + ( D - H )  = - ( D -  C)  2]  

( F - / 4 )  2 [ ( A  _ ] ) 2  _ ( A  - G )  2 + ( A  - D )  2 - ( A  - C) 2 + ( B - O )  2 - ( B - M )  2 

( B - C )  2 - (B - G )  2 + ( L  - C )  2 - (L  - J ) 2  + ( L  - G )  2 - (L  - M )  2 + ( K -  G )  2 

( K - D )  2 + ( K - M )  2 - ( K - J ) 2  + ( E _ M )  2 - ( E - C )  2 + ( E - J ) 2  _ ( E - D )  21 

monosubstituted on boron, only one (fig. 2a) is chiral corresponding to the ligand 
partition (921)o above. Similarly, among the four possible meta carboranes mono- 
substituted on boron, only one (fig. 2b) is chiral corresponding to the ligand parti- 
tion (921)m. The single para carborane isomer is not chiral. For both of the chiral 
boron monosubstituted carboranes C2BloHllX in fig. 2, the chirality polynomial 
in table 3 reduces to 

X(921)(C2BloHllX ) = ( c - b )  2 [ ( x - c )  2 + ( x - b )  2 - ( c - b ) Z ] .  (20) 

In eq. (20), x is the parameter for the substituent X, b is the parameter for a BH 
vertex, and c is the parameter for a CH vertex. 
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